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A closed-form analytical solution for the inversion of the integral equation

relating small-angle scattering intensity distributions of two-phase systems to

chord-length distributions is presented. The result is generalized to arbitrary

derivatives of higher order of the autocorrelation function and to arbitrary

projections of the scattering intensity (including slit collimation). This inverse

transformation offers an elegant way to investigate the impact of certain

features, e.g. singularities, in the chord-length distribution or its higher-order

derivatives on the scattering curve, e.g. oscillatory components in the asymptotic

behavior at a large scattering vector. Several examples are discussed.

1. Introduction

Chord-length distributions (CLD) play an important role in

the qualitative and quantitative evaluation of the small-angle

scattering (SAS) of two-phase systems, in both the dilute and

the dense case (MeÂring & Tchoubar-Vallat, 1965, 1966; Porod,

1967; MeÂring & Tchoubar, 1968; Wu & Schmidt, 1971). The

relationship between the CLD g�r� and the autocorrelation

function (CF) 
�r� is given by

g�r� � lp

00�r> 0�; �1�

where lp is the average chord length (Porod length). The CLD

contains the complete structural information obtainable from

non-normalized SAS intensities of statistically isotropic two-

phase systems.

The behavior of g�r� in the vicinity of small r is de®ned by

the general structure of the interface (edges, vertices, curva-

ture; Ciccariello et al., 1981; Ciccariello & Benedetti, 1982;

Ciccariello, 1993; Sobry et al., 1994; Ciccariello & Sobry, 1995).

Singularities in g and g0 at ®nite values of r are related to

particularities of the surface in the vicinity of minimal or

maximal diameter of monodisperse particles in dilute solution

(Wu & Schmidt, 1974) or of the structural unit in periodic

dense two-phase systems, respectively.

In the case of lamellar two-phase systems, the appropriate

one-dimensional equivalent of the CLD to be used for the

evaluation of structural parameters is the interface distribu-

tion function (Ruland, 1977, 1978).

The CLD is determined by the integral transform (MeÂring

& Tchoubar-Vallat, 1965, 1966)

g�r� � ÿ8

Z1
0

�1ÿ 2�3s4lpkÿ1I�s�� sin�z�
z

� �00
ds; �2�

where I is the SAS intensity (in unsmeared pin-hole collima-

tion), s � 2�ÿ1 sin � is the absolute value of the scattering

vector, 2� the scattering angle, � the wavelength, k is a

normalization factor (Porod invariant), z � 2�rs and the

derivatives of sin�z�=z are with respect to z.

The possibility of an inversion of (2), i.e. the integral

transform to be used to obtain I�s� from g�r�, has been

discussed by MeÂring & Tchoubar (1968), but an explicit

expression for this transform was not found by those authors.

In this study, we present a closed-form solution to a

generalization of this problem, namely the transformation of


�n��r� for arbitrary n (which can be specialized to n � 2, but is

also valid for n � 0) to an arbitrary projection of the corre-

sponding scattering curve (so that slit-smeared scattering

curves in the in®nite-slit-length approximation are also

included in the approach). Examples of its application are

given that demonstrate the usefulness of this transformation

for the solution of various problems.

The paper closes with a short review of the requirements for

an accurate determination of g�r� from experimental data.

2. Basic relationships

For the purpose of the mathematical treatment developed in

this paper, we consider the function 
�r� to be de®ned for

positive values of r only, and continuously differentiable at

r � 0. It is shown in Appendix A that this de®nition of 
�r�
does not restrict the information contained in 
�r� if the

appropriate transforms are used.

We start with the relationship

I�s� � k

Z1
0


�r� sin�z�
z

4�r2 dr; �3�

where k � V��1ÿ ����1 ÿ �2�2 (Porod, 1951, 1952a,b) and V

is the irradiated volume of the sample, �j is the (constant)
² Present address: Department of Chemistry, State University of New York at
Stony Brook, Stony Brook, NY 11794, USA.



electron density (small-angle X-ray scattering, SAXS) or

scattering-length density (small-angle neutron scattering,

SANS) within phase j and � is the volume fraction of one

phase. This de®nition of k implies that the interfacial bound-

aries of the phases are in®nitely sharp.

If we designate a d-dimensional projection by f gd, we obtain

fIg2�s� � 2
R1
0

I�s2 � y2�1=2 dy

� 2�k
R1
0

r
�r�J0�z� dr �4�

and

fIg1�s� � 2�
R1
0

yI�s2 � y2�1=2 dy

� 2k
R1
0


�r� cos�z� dr; �5�

where J0 is the Bessel function of the ®rst kind of zero order.

fIg2 is equivalent to the SAS intensity measured with a slit

system of `in®nite' length. fIg1 is related to the lattice size

component of a Debye±Scherrer line pro®le.

If we simplify the notation by putting k � 1, I3 � I,

I2 � fIg2 and I1 � fIg1, we ®nd the general expression

Id�s� �
R
v


�r�Kd�z� dvd;r; �6�

where Kd is the general transformation kernel

Kd�z� � ÿ�d=2��z=2�1ÿd=2
Jd=2ÿ1�z� �7�

and the volume element in d-dimensional space is given by

dvd;r �
2�d=2

ÿ�d=2� r
dÿ1 dr: �8�

The inversion of (6) is


�r� � R
v

Id�s�Kd�z� dvd;s; �9�

where dvd;s is the reciprocal-space analog to dvd;r.

3. Relationship between Id and the derivatives of c

From (9), we obtain


�n��r� � R
v

�2�s�nId�s�K�n�d �z� dvd;s; �10�

where the superscript �n� represents the nth derivative with

respect to r or z, respectively.

For the inversion of the integral transform (10), we expect a

relationship of the type

�2�s�nId�s� �
R
v


�n��r�Kÿ1
d;n�z� dvd;r; �11�

where Kÿ1
d;n is the inverse kernel to K

�n�
d . It is shown in

Appendix A that a general expression for the inverse kernel

can be found:

Kÿ1
d;n�z� �

�ÿz�n
�d�n 1F2

�1� d�=2

�d� n�=2; �1� d� n�=2

����ÿ z2

4

� �
;

�12�
where �d�n � ÿ�d� n�=ÿ�d� is the Pochhammer symbol and

1F2 is a hypergeometric function. Tables 1 and 2 show explicit

expressions for d � 1, 2, 3, and values of n up to 4.

For odd values of d, the inverse kernel is composed of

trigonometric functions. Even values of d result in combina-

tions of Bessel functions J� and Struve functions H�, both of

the ®rst kind.

It is readily veri®ed that the inverse kernels Kÿ1
d;n follow a

three-termed recurrence relation

Kÿ1
d;n�z� � ÿ �nÿ 2�ÿ1�zKÿ1

d;nÿ1�z� � �d� nÿ 3�Kÿ1
d;nÿ2�z�

� zKÿ1
d;nÿ3�z��; �13�

which can be used for n> 2 to extend these tables. It should

also be noted that symbolic software packages such as Math-

ematica or Maple have no problems ®nding explicit expres-

sions for speci®ed d and n.

However, especially for the case where n � 2, the practical

use of these explicit expressions is limited since the compu-

tational effort of calculating a single Struve H� function, being

itself a hypergeometric function of the 1F2 type, is comparable

to calculating the complete Kÿ1
2;n kernel using the generic

expression (12), and analytical properties such as asymptotic

expansions are also better investigated with the generic

kernel.

The equivalent of the integral transform (10) has been

discussed by MeÂring & Tchoubar (1968) and the problem of its

inversion has been mentioned, but a solution was not found. A

similar problem has been considered by Ciccariello (1995) for

the case d � 3 and odd n which can be reformulated in the

form (11). A solution has been given, but it is complicated and

lengthy. The general kernel of the inverse transformation (11),

especially presented in its concise form (12), has been

unknown until now.
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Table 1
The kernels Kÿ1

1;n and Kÿ1
3;n for n up to 4.

n Kÿ1
1;n Kÿ1

3;n

0 cos z zÿ1 sin z
1 ÿ sin z zÿ2�z cos zÿ sin z�
2 1ÿ cos z zÿ2�2ÿ 2 cos zÿ z sin z�
3 ÿz� sin z zÿ2�ÿ2z� 3 sin zÿ z cos z�
4 ÿ1� z2=2� cos z zÿ2�ÿ4� z2 � 4 cos z� z sin z�

Table 2
The kernel Kÿ1

2;n for n up to 4.

n Kÿ1
2;n

0 J0�z�
1 ÿJ1�z�
2 ��=2� J1�z�H0�z� ÿ J0�z�H1�z�

� �
3 ÿzJ0�z� � 2J1�z� ÿ ��z=2��J1�z�H0�z� ÿ J0�z�H1�z��
4 �z2=2�J0�z� ÿ �z=2�J1�z� ÿ ��=4��3ÿ z2��J1�z�H0�z�

ÿJ0�z�H1�z��
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4. Relationship between Id and the chord-length
distribution

The relationship between 
 and the chord-length distribution

g (MeÂring & Tchoubar-Vallat, 1965, 1966, MeÂring & Tchoubar,

1968) is given by (1). The Porod length lp is the average chord

length of the two-phase system de®ned by

lp �
R1
0

l g�l� dl � �hl1iÿ1 � hl2iÿ1�ÿ1; �14�

where hlji is the number average of the chord length within

phase j.

The non-oscillatory component in Kÿ1
d;2 is related to the

Porod asymptote. We consider the relationship

�2�s�2I3�s� �
Z
v


 00�r�Kÿ1
3;2�z� dvd;r

�
Z
v


 00�r� 2

z2
dvd;r

ÿ
Z
v


 00�r� 1

z2
�2 cos z� z sin z� dvd;r

� 2

�s2lp

Z1
0

g�r� drÿ
Z1
0

g�r� cos z� z

2
sin z

� �
dr

24 35:
�15�

Since, by de®nition, R1
0

g�r� dr � 1; �16�

we obtain

2�3s4I3�s� � lÿ1
p �1ÿG3�s��: �17�

From (17) and (15), we ®nd Porod's law (Porod, 1952a,b) for

I3:

lim
s!1

2�3s4I3�s� � 1=lp �18�

and the relationship

G3�s� � 1ÿ 2�3s4lpI3�s�

� R1
0

g�r��1ÿ �z2=2�Kÿ1
3;2�z�� dr; �19�

which is the inversion of the relationship

g�r� � ÿ8
R1
0

G3�s�K003 �z� ds: �20�

For arbitrary values of d, the non-oscillatory component of

Kÿ1
d;2�z� is ÿ�d�z1ÿd. This leads to

Gd�s� � 1ÿ 2��3�d�=2s1�d

ÿ��1� d�=2� lpId�s�

�
Z1
0

g�r� 1ÿ zdÿ1

ÿ�d�K
ÿ1
d;2�z�

� �
dr; �21�

which is the inversion of the integral transform

g�r� � ÿ 4�1=2ÿ��1� d�=2�
ÿ�d=2�

Z1
0

Gd�s�K00d�z� ds: �22�

For arbitrary values of d, Porod's law is given by

lim
s!1

2��3�d�=2s1�d

ÿ��1� d�=2� Id�s� �
1

lp

: �23�

The equivalent of the integral transform (22) for d � 1; 2; 3

has already been given by MeÂring & Tchoubar (1968),

whereas the inverse transform (21) has been unknown until

now.

5. Applications

5.1. Spheres

We consider the CF of a sphere of diameter D and its

higher-order derivatives with respect to x � r=D:


s � 1ÿ 3x

2
� x3

2

� �
��1ÿ x� �24�


 00s � 3x��1ÿ x� �25�

�3�s � 3 ��1ÿ x� ÿ ��1ÿ x�� � �26�

�4�s � ÿ3 ��1ÿ x� � �0�1ÿ x�� �: �27�

� is the Heaviside unit-step function [�0�x� � ��x�] and � the

Dirac � function. Equations (24)±(27) provide an instructive

example how to apply the inverse transformation if singula-

rities are present which can be reduced to � functions upon

multiple differentiation. As our inverse transformation (11)

holds for arbitrary differentiation order n, we are at liberty to

differentiate our CF or CLD as often as we wish until the

resulting 
�n� is in a form suitable to perform the integration.

Since an integration over a � function trivially reduces to the

kernel,
R
��xÿ t�K�t� dt � K�x�, � functions are preferred

targets for this multiple differentiation process. If we

encounter a situation where 
�n� consists of a linear combi-

nation of terms where their � functions appear at different n,

like it is in (26) and (27), we may even split this linear

combination into single terms and treat each term separately

with a different n, this technique being justi®ed by the fact that

both the differentiation as well as our inverse integral trans-

form are linear operations. While we believe this intuitive

argument is rigorous and, thus, suf®cient, the same result can

also be shown in a more formal way involving integration by

parts. Hence, applying (11) to the � terms (`� shells') in 
 3� �
s and


 4� �
s , we obtain

Is;d � ÿ
6�d=2Dd

ÿ�d=2� �z
ÿ3Kÿ1

d;3�z� � zÿ4Kÿ1
d;4�z��; �28�

where z � 2�Ds. For d � 3, this reduces to the well known

Rayleigh expression for the scattering of a sphere. For d � 2,

we obtain an analytical expression for the scattering of a

sphere using in®nite slit collimation.

Clearly, the sphere represents a special case, since its CLD

can be completely reduced to � functions so that the exact

solution for the scattering curve can be expressed in terms of



inverse kernels. In the general case, there will be additional

terms which cannot be reduced to � functions. In this case, �
functions can only be produced at the singularites of the CLD

and the application of the described technique to only these �
terms leads to the asymptotic behavior of the scattering curve.

5.2. Ellipsoids of revolution

The ®rst oscillatory components of the SAS of an ellipsoid

of revolution have been derived by Wu & Schmidt (1973a). In

this section, we show a way to determine all components of the

asymptotic behavior of the SAS.

The direction-dependent CF of an ellipsoid of revolution


e�x� is obtained from the CF of a sphere by an af®ne defor-

mation


e�x� � 
s�Tx� �29�
using the tensor

T �
k1=2

k1=2

1=k

0@ 1A: �30�

Since x � r=D and det T � 1, the volume of the ellipsoid is

equal to that of the corresponding sphere (V � �D3=6)

independent of the deformation parameter �. The semiaxes of

the ellipsoid are a � b � D=�2�1=2� and c � �D=2; �< 1

de®nes a prolate, �> 1 an oblate ellipsoid, respectively.

Using polar coordinates (polar angle �, � � cos�), we ®nd


e�x� � 
s�xf ����; �31�
where

f ��� � ��ÿ �2��ÿ �ÿ2��1=2: �32�
The third and fourth derivatives of 
e with respect to x are


�3�e �x; �� � ÿ3�f ����3f��1ÿ xf ���� ÿ x��1ÿ xf ����g �33�

�4�e �x; �� � ÿ3�f ����3f�0�1ÿ xf ���� � f �����1ÿ xf ����g: �34�
The � terms (`� shells') in (33) and (34) are

�
�3�e �x; ���� � ÿ3�f ����3��1ÿ xf ���� �35�
�
�4�e �x; ���� � ÿ3�f ����4��1ÿ xf ����: �36�

The spherical average is obtained by (note that

d� � ÿ sin� d�)

h
�n�e �x; ��i! � 
�n�e �x� � 1
2

R1
ÿ1


�n�e �x; �� d�: �37�

For the spherical average of the � shell in 
�3�s , we ®nd the

expressions

�
�3�e �x��� � ÿ
3�

x4���3 ÿ 1���x2 ÿ 1��1=2

� ���xÿ �ÿ1=2���ÿ x��

� ÿ 3�1=2 expf�i�sgn��ÿ 1� ÿ 1�=4g
x4j�3 ÿ 1j1=2��x� �ÿ1=2��xÿ �ÿ1=2��1=2

� ���xÿ �ÿ1=2���ÿ x��: �38�
The spherical average of the � shell in 
�4�e is given by

�
�4�e �x��� �
1

x
�
�3�e �x���: �39�

Applying (11) to the � shells in 
�3�e and 
�4�e and introducing

the parameter y � Ds, we obtain

Ie;3�y� �
4�

�2�y�4
Z�

�ÿ1=2

x2�
�3�e �x���

� 2�yKÿ1
33 �2�xy� � 1

x
Kÿ1

34 �2�xy�
� �

dx

� 1

�2�y�4
Z�

�ÿ1=2

�
�3�e �x���F�x; y� dx; �40�

where

F�x; y� � 4�x2 2�yKÿ1
33 �2�xy� � 1

x
Kÿ1

34 �2�xy�
� �

� ÿ4�xÿ 4

�xy2
ÿ 4�x cos�2�xy�

� 4 cos�2�xy�
�xy2

� 8 sin�2�xy�
y

: �41�

From the ®rst non-oscillatory term of F�x; y�, we obtain the

Porod term Ie;3;P:

Ie;3;P�y� �
1

�2�y�4 ÿ4�

Z�
�ÿ1=2

x�
�3�e �x��� dx

0@ 1A
� 3

8�3y4

1

�
� �2

��3 ÿ 1�1=2
arccos��ÿ3=2�

� �
: �42�

Accordingly, the average chord length is

lp �
4D

3

1

�
� �2

��3 ÿ 1�1=2
arccos��ÿ3=2�

� �ÿ1

: �43�

From the second non-oscillatory term of F�x; y�, we obtain the

Kirste & Porod (1962) term Ie;3;KP:

Ie;3;KP�y� �
1

�2�y�4 ÿ
4

�y2

Z�
�ÿ1=2

�
�3�e �x���
dx

x

0@ 1A
� 3

32�5y6
3� 2

�3
� 3�3

��3 ÿ 1�1=2
arccos �ÿ3=2

ÿ �� �
: �44�

The oscillatory terms Ie;3;osc are given by the integral transform

Ie;3;osc�y� �
1

�2�y�4
Z�

�ÿ1=2

�
�3�e �x���

�
�
ÿ4�x cos�2�xy� � 4 cos�2�xy�

�xy2

� 8 sin�2�xy�
y

�
dx; �45�

which results in
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�2�y�4Ie;3;osc�y� '
X
n�0

an�
�9�2n�=4

y1=2�nj�3 ÿ 1j1=2

� cos�2��ÿ1=2y� n�=2� � sgn��ÿ 1�=4�
�
X
n�0

bn

���3 ÿ 1�y�1�n
sin�2��y� n�=2�: �46�

Explicit expressions for the coef®cients an and bn are given in

Appendix D.

5.3. Relationship between oscillations in Id and discontinu-
ities in g and its derivatives

Wu & Schmidt (1974) have reported that discontinuities in g

and g0 lead to oscillatory components Iosc of the type

Iosc�s� / sÿ4
X

k

jk

sin�2�Dks� �k�
�2�Dks��k

; �47�

r � Dk is considered to be a position where g�r� or g0�r� has a

discontinuity. �k and jk are parameters that are determined by

the principal curvatures and other properties of the interface

at the point of contact of the chord of length Dk. An essential

result of their paper is the statement that the exponents �k are

expected to show values in the range 0 � �k � 1.

The results of x3 offer the possibility of examining this

statement.

5.3.1. Integer exponents. Finite discontinuities in g�r� and

its derivatives are characterized by the appearance of Dirac �
functions in the next-higher derivative. If, for example, g�n��r�
shows a step of height �g

�n�
k at r � Dk, then g�n�1��r� contains a

� function of weight �g
�n�
k at r � Dk.

Considering the intensity component �Ik related to

�g
�n�
k � lp�
�n�2�

k , we ®nd

s4�Ik�s� / s1ÿnr2
k�g

�n�
k Kÿ1

d;n�3�zk�; �48�

where zk � 2�Dks.

Taking into account that the oscillatory components of Kÿ1
3;n

are proportional to zÿ1 cos z and zÿ2 sin z for odd values of n,

and to zÿ1 sin z and zÿ2 cos z for even values of n, we ®nd that

®nite discontinuities in the nth derivative of g�r� result in

exponents �k with the values n and n� 1, and that the

corresponding phases �k as de®ned in (47) can only take the

values 0 or �=2.

Generally, ®nite discontinuities are located at Dk values

which correspond to minimal or maximal dimensions of

particles (Wu & Schmidt, 1973a). If we consider the method

used to derive 
�3� in x5.2, ®nite discontinuities appear when

the � shell of the averaging sphere touches the � shell of the

function �
�3��x��� at a distance r � Dk at which the principal

radii of curvature (i.e. the reciprocal absolute values of the

Figure 1
Prolate ellipsoid of revolution (dark) and spherical averaging � shell
(light) touching it at the pole. The principal radii of curvature of the
prolate ellipsoid are both smaller than the radius of the averaging � shell.

Figure 2
Oblate ellipsoid of revolution (light) and spherical averaging � shell
(dark) touching it at the pole. The principal radii of curvature of the
oblate ellipsoid are both larger than the radius of the averaging � shell.

Figure 3
Oblate ellipsoid of revolution (dark) and spherical averaging � shell
(light) touching it at the equator. One principal radius of curvature of the
oblate ellipsoid is equal to and the other is smaller than the radius of the
averaging � shell.



principal curvatures themselves) of the latter are either both

smaller (Fig. 1) or both larger (Fig. 2) than Dk.

5.3.2. Non-integer exponents. Non-integer exponents can

be related to in®nite discontinuities of the type �1ÿ x��k or

�xÿ 1��k , where �k < 0 and x � r=Dk.

As we have seen in x5.2, in®nite discontinuities with

�k � ÿ1=2 appear when the � shell of the averaging sphere

touches the � shell of the function �
�3��x��� at a distance

r � Dk at which one principal radius of curvature of the latter

is equal to Dk and the other is either smaller (Fig. 3) or larger

(Fig. 4) than Dk. Wu & Schmidt (1974) have shown that this

type of discontinuity appears in all convex particles of revo-

lution.

If we use the method given in x5.2 for general ellipsoids, we

obtain in 
�3�, apart from two ®nite discontinuities at the

smallest and the largest diameter, a logarithmic singularity of

the type ln j1ÿ xj. This type of singularity has already been

discussed by Wu & Schmidt (1973b). It should be mentioned

that under certain conditions both a ®nite step and a loga-

rithmic singularity can occur (Ciccariello, 1991a,b). In 
�4�, the

logarithmic singularity produces a discontinuity of the type

j1ÿ xjÿ1 sgn�1ÿ x�. The corresponding Dk is de®ned by the

intermediate diameter of the ellipsoid. Thus, in®nite discon-

tinuities with integer values of �k appear in 
�n� with n > 3

when the � shell of the averaging sphere touches the � shell of

the function �
�3��x��� at a distance r � Dk at which one prin-

cipal radius of curvature of the latter is larger and the other is

smaller than Dk (see Fig. 5).

These observations suggest that the only non-integer

exponents to be expected in the SAS of monodisperse convex

particles are of the type �k � �1� 2n�=2.

5.3.3. Generation of general non-integer exponents. We

consider a hypothetical CLD of the type

g�x� / x�1ÿ x2��; �49�

where x � r=Dmax. g�x� is supposed to be non-zero only in the

interval 0 � x � 1. We consider � values larger than zero. For

� � 0, we obtain the CLD of a sphere of diameter Dmax.

The scattering intensity I (� I3) corresponding to (49) is

given by

I�s� � 1F2

2

5=2; 4� �
����ÿ z2

4

� �
; �50�

where z is 2�Dmaxs. For large values of s, we obtain the

asymptote proportional to

1

z4
� a1

z6
� a2 cos�zÿ ��=2�

z4�� ÿ a3 sin�zÿ ��=2�
z5��

�O
cos�zÿ ��=2�

z6��

� �
; �51�

where the coef®cients ak are functions of �. If 0 < � < 1, the

®rst derivative

g0�x� / �1ÿ x2�� ÿ 2�x2�1ÿ x2��ÿ1 �52�

shows an in®nite discontinuity at x � 1 with an arbitrary non-

integer exponent. For larger values of �, in®nite disconti-

nuities appear in the corresponding derivatives of higher

order.

It is of interest to note that (49) is equivalent to the CLD of

a polydisperse dilute system of spheres with a number distri-

bution of diameters hD of the type

hD�x� / x�1ÿ x2��ÿ1; �53�

where x � D=Dmax. There is, apparently, no monodisperse

system of particles corresponding to a chord-length distribu-

tion as given by (49).

Acta Cryst. (2001). A57, 482±491 Burger and Ruland � Chord-length distributions 487

research papers

Figure 4
Prolate ellipsoid of revolution (light) and spherical averaging � shell
(dark) touching it at the equator. One principal radius of curvature of the
prolate ellipsoid is equal to and the other is larger than the radius of the
averaging � shell.

Figure 5
General ellipsoid of revolution (dark) with three different semi-axes
a 6� b 6� c and spherical averaging � shell (light) touching it. One
principal radius of curvature of the ellipsoid is smaller and the other is
larger than the radius of the averaging � shell.
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6. Experimental requirements for an accurate
determination of CLDs

The determination of g�r� from experimental data requires not

only a very high accuracy of the SAS intensity, especially at

large s values (Porod asymptote), but also that one is fully

aware of all the necessary corrections to be taken into account.

These are collimation effects, the subtraction of the scattering

due to density ¯uctuations within the phases, and the elim-

ination of the effect of the ®nite width of the phase boundaries

(Ruland, 1971). Furthermore, the statistical structure of the

phase boundaries (Ruland, 1987; Semenov, 1994) can produce

supplementary effects. In general, a comprehensive approach

taking into account all these effects in a single model which

works on the original data and has proper error propagation is

preferable to a stepwise application of subsequent corrections

where fundamental problems such as ill-posedness and data

cut-offs can quickly render the result of one step of the chain

meaningless, and usually error propagation is also lost. It is for

example highly questionable if any meaningful Porod analysis

is still possible after a separate collimation desmearing step.

Without a proper treatment of these corrections, the deter-

mination of Porod's asymptote is rather arbitrary. In this

context, it should be noted that log±log plots of uncorrected

intensities versus s produce, in many cases, fractional expo-

nents which can be misinterpreted as the scattering from

fractal structures (Ruland, 2001).

APPENDIX A
Derivation of the inverse kernel

We assume 
�r� to be de®ned for positive values of r only, and

continuously differentiable at r � 0. We consider the integral

transform


�n��r� � R
v

�2�s�nId�s�K�n�d �z� dvd;s; �54�

where the kernel is given by

Kd�z� � ÿ�d=2��z=2�1ÿd=2
Jd=2ÿ1�z�; �55�

with z � 2�rs and

dvd;s �
2�d=2

ÿ�d=2� s
dÿ1 ds �56�

is the volume element in reciprocal space. We want to deter-

mine the inverse kernel Kÿ1
d;n with the property

�2�s�nId�s� �
R
v


�n��r�Kÿ1
d;n�z� dvd;r; �57�

where

dvd;r �
2�d=2

ÿ�d=2� r
dÿ1 dr: �58�

The relationship between the kernels can be de®ned by

Z1
0

K
�n�
d �2�rs0� 2�d=2

ÿ�d=2� �s
0�dÿ1

� Kÿ1
d;n�2�rs� 2�d=2

ÿ�d=2� r
dÿ1 dr � ��sÿ s0�: �59�

A closed-form solution for arbitrary n can be obtained by

representing K
�n�
d �z� as a Meijer's G function

Kd�z� � 0F1

d

2
ÿ z2

4

����� �
� ÿ

d

2

� �
G10

02

z2

4

����0; 1ÿ d=2

� �
�60�

K
�n�
d �z� � �ÿ1�nÿ�d=2�

�G20
13

z2

4

�1ÿ n�=2

0; 1=2; 1ÿ �d� n�=2

����� �
; �61�

where the derivative order n now is an arbitrary parameter.

The integral of the product of two G functions results in

another G function. Dirac's � function can be represented by

G00
00. The inverse kernel is assumed to be representable by a G

function, the coef®cients of which have to be determined such

that all parameters of G vanish in the result of (59). This is the

case for

Kÿ1
d;n�z� � �ÿ1�nÿ�d=2�G11

13

z2

4

�1ÿ d� n�=2

n=2; �1ÿ d�=2; 1ÿ d=2

����� �
� �ÿz�n
�d�n 1F2

�1� d�=2

�d� n�=2; �1� d� n�=2
ÿ z2

4

����� �
: �62�

APPENDIX B
Alternative derivation of the inverse kernel

For d � 1, an equivalent expression can be obtained by

considering the complete function 
c de®ned by


c�r� � 
�jrj�: �63�

Using Fourier transform theory, we ®nd


�n�c �r� �
R1
ÿ1
�2�s�nI1�s� cos�n��z�Z ds �64�

�2�s�nI1�s� �
R1
ÿ1


�n�c �r� cos�n��z� dr: �65�

For m � 1, the derivatives of 
c�r� are given by


�2m�
c �r� � 
�2m� jrj� � � 2

Pmÿ1

k�0


�2mÿ2kÿ1��0���2k��r� �66�


�2mÿ1�
c �r� � 
�2mÿ1� jrj� � sgn�r� � 2

Pmÿ1

k�1


�2mÿ2 kÿ1��0���2kÿ1��r�:

�67�

This results in



�2�s�2m
I1�s� � 2�ÿ1�m

"R1
0


�2m��r� cos�z� dr

� Pmÿ1

k�0

�ÿ1�k�2�s�2k
�2mÿ2kÿ1��0�
#

�68�

�2�s�2mÿ1
I1�s� � 2�ÿ1�m

"R1
0


�2mÿ1��r� sin�z� dr

� Pmÿ1

k�1

�ÿ1�k�2�s�2kÿ1
�2mÿ2kÿ1��0�
#
: �69�

It can be shown that the above expressions are equivalent to

�2�s�nI1�s� �
R
v


�n��r�Kÿ1
1;n�z� dv1;r; �70�

provided that R1
0


�2m��r� dr � ÿ
�2mÿ1��0�; �71�

i.e.


�2mÿ1��1� � 0: �72�
The latter condition has to be considered as a criterion of

convergence for 
�r�.
Comparable results can be found for other values of d using

relationships of the type

I3�s� � ÿ
1

2�s

@

@s
I1�s� �73�

I2�s� �2
R1
0

I3�s2 � y2�1=2 dy: �74�

APPENDIX C
Asymptotic expansion of the inverse kernel

The asymptotic expansion of the inverse kernel Kÿ1
d;n is split

into a non-oscillatory and an oscillatory component:

Kÿ1
d;n � Kÿ1

d;n;nos � Kÿ1
d;n;osc: �75�

For the non-oscillatory part, we ®nd

Kÿ1
d;n;nos�z� � �ÿ1�n ÿ�d�

ÿ�nÿ 1� z
ÿ1ÿd�n

� 3F0

1� d

2
; 1ÿ n

2
;

3ÿ n

2

����ÿ 4

z2

� �
: �76�

For n � 0 or n � 1, this expression vanishes identically due to

the diverging ÿ function in the denominator of the prefactor.

Thus, there are no non-oscillatory parts for n < 2.

Since n is an integer, one of the parameters of the 3F0

function always becomes a negative integer. Thus, the hyper-

geometric function reduces to a polynomial in zÿ2 of the order

�nÿ 2�=2 for even n and �nÿ 3�=2 for odd n, respectively.

Explicitly, we ®nd

Kÿ1
d;n;nos�z� � �ÿ1�1�n ÿ�d�

n!
zÿ1ÿd�nn�1ÿ n�

�
(

1ÿ 1� d

2

� �
�2ÿ n��3ÿ n�zÿ2 � 1� d

2

� �
� 3� d

2

� �
�2ÿ n��3ÿ n��4ÿ n��5ÿ n� z

ÿ4

2!

�O�zÿ6�
)
: �77�

The building law of this expression and its termination are

obvious.

For the oscillatory component of the asymptotic expansion

of the inverse kernel Kÿ1
d;n, we ®nd

Kÿ1
d;n;osc�z� � �ÿ1�n�ÿ1=2ÿ�d=2��2=z��dÿ1�=2

�
�

cos�zÿ ��dÿ 1� 2n�=4�

� �dÿ 1��d� 4nÿ 3�
8z

cos�zÿ ��dÿ 3� 2 n�=4�

�O��dÿ 3� . . . zÿ2 cos�zÿ ��dÿ 5� 2n�=4��
�
:

�78�

This series terminates for d � 1 after the ®rst and for d � 3

after the second term, respectively. It can be shown that, when

both the non-oscillatory and the oscillatory series of the

asymptotic expansion terminate, the asymptotic expansion is

equal to the exact solution. Thus, for odd values of d, the

inverse kernel can be expressed in simple trigonometric form,

see Table 1. The same behavior is found e.g. in Bessel func-

tions Jd=2, which have a simple trigonometric representation

for odd integer d.

For an even d including d � 2, the asymptotic expansion

(78) has an in®nite number of terms. This case is more

complicated and the exact solution cannot be expressed in

trigonometric form. However, it can be represented in terms

of Bessel and Struve functions of the ®rst kind of integer

orders. Explicit expressions are listed in Table 2.

APPENDIX D
Asymptotic behavior of the ellipsoid of revolution

The function Ie;osc of the ellipsoid of revolution is composed of

the real and the imaginary parts, respectively, of the compo-

nents Jk

�2�y�4Ie;osc�y� � Re�J1 � J3� � Im�J2�; �79�

where the functions Jk�y� are the Fourier transforms of fk�x�,

Jk �
R�

�ÿ1=2

fk�x� exp�2�ixy� dx �80�

and
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f1�x� � ÿ4�x�
�3�e �x��� �81�
f2�x� �

8

y
�
�3�e �x��� �82�

f3�x� �
4

�xy2
�
�3�e �x���: �83�

The Fourier transforms can be obtained as an asymptotic

expansion according to ErdeÂ lyi (1956) of the type

Jk � Bk;N ÿ Ak;N �O�yÿN�; �84�
where

Ak;N � ÿ
XNÿ1

n�0

ÿ�n� 1=2�
n!�2�y�n�1=2j�3 ÿ 1j1=2

� expfi�2��ÿ1=2y� n�=2� � sgn��ÿ 1�=4�g

� @n

@xn
�k�x�

� �
x��ÿ1=2

�85�

�k�x� � �xÿ �ÿ1=2�1=2j�3 ÿ 1j1=2

� expf�i�1ÿ sgn��ÿ 1��=4gfk�x� �86�

Bk;N �
XNÿ1

n�0

�2�y�ÿnÿ1 expfi�2��y� ��nÿ 1�=2�g

� @n

@xn
fk�x�

� �
x��
: �87�

The result is

�2�y�4Ie;osc�y� '
X
n�0

an�
�9�2n�=4

yn�1=2j�3 ÿ 1j1=2

� cos�2��1=2y� n�=2� � sgn��ÿ 1�=4�
�
X
n�0

bn

���3 ÿ 1�y�1�n
sin�2��y� n�=2�: �88�

The ®rst six coef®cients of expansion (88) are shown in

Table 3.

APPENDIX E
Application of the inverse kernel to one-dimensional
and two-dimensional two-phase systems

In our treatment so far, we considered a three-dimensional

isotropic two-phase system, and the spatial dimension d

described the projection the corresponding intensity distri-

bution was subject to. Let us limit the following considerations

to the unprojected (unsmeared) case, but consider two-phase

systems of lower dimension, namely systems of in®nitely high

cylinders or prisms (d � 2) and systems of in®nitely extended

lamellae (d � 1). In these lower-dimensional two-phase

systems, we are interested in the CFs 
d, the CLDs gd / 
 00d and

the intensity distributions Id of the two-dimensional cross

section perpendicular to the cylinders or the one-dimensional

section in the direction of the lamella normals, respectively

Id�s� �
R
v


d�r�Kd�z� dvd;r; �89�

which is different from the overall three-dimensional CLD of

the spherically averaged system. A spherical average of Id

leads to

I�s� �
h��s1���s2�I1�s3�i!
hI2�s12���s3�i!

I3�s�

8><>:
9>=>;

�
�2�s2�ÿ1I1�s�
�2s�ÿ1I2�s�

I3�s�

8><>:
9>=>; � �

d=2ÿ1sdÿ3

2ÿ�d=2� Id�s�: �90�

The inverse kernel derived in this paper allows us to establish

a relationship between the (in pinhole collimation) experi-

mentally measured spherically averaged intensity I and the

subdimensional CLDs 
 00d and their higher derivatives 
�n�d .


d�r� �
Z
v

Id�s�Kd�z� dvd;s �91�


�n�d �r� �
Z
v

�2�s�nId�s�K�n�d �z� dvd;s �92�

�
Z
v

�2�s�n 2ÿ�d=2�
�d=2ÿ1sdÿ3

I�s�K�n�d �z� dvd;s �93�

and the inversion is

21�nÿ�d=2��1�nÿd=2s3ÿd�nI�s� � R
v


�n�d �r�Kÿ1
d;n�z� dvd;r: �94�

It is even possible to combine a subdimensional two-phase

system with a projection of the intensity distribution, but in

this case the general inverse kernel can only be given in terms

of a Meijer's G function that cannot be further simpli®ed.
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